

3DRA Assessment of Airway Compression in Biventricular Congenital Heart Disease

Thomas E. Fagan, MD

University of Tennessee Heath Science Center Memphis, Tennessee

Disclosures

Philips Healthcare:

Grant support

Speaking Bureau / Teaching

Airway Abnormalities and Congential Cardiac Disease

- Frequently associated
- Trisomy 21
 - 40-50% CHD
 - 75% airway abnormalities
- 22q11 syndromes
 - 50% conotruncal abnormalities
 - 56% tracheal or bronchial stenosis
- Vascular sling
 - Up to 50% complete tracheal rings

Iserin, *Eur J Pediatr.* 1998;157:881–884 Bertrand, *Pediatr Pulmonol.* 2003;36:137–141 Cohen, *Ann. Otol.* 1976;85:582

Airway Abnormalities and Congential Cardiac Disease

Extrinsic airway compression

- Vascular rings / sling
- Dilated pulmonary arteries / Absent pulmonary valve
- Anomalous aortic course
- Dilated aorta
- Intrinsic airway disease
 - Laryngomalacia
 - Tracheomalacia
 - Bronchomalacia
 - Tracheal stenosis / complete tracheal rings

Airway Abnormalities and Congential Cardiac Disease

- Interventions for CHD may be complicated by or exacerbate airway abnormalities
- Surgical
 - PA bifurcation side-to-side arterioplasty
 - Stage I Norwood
- Interventions
 - Pulmonary artery stent placement
 - Coarctation stent placement / Hybrid Stage I Norwood
 - Pulmonary vein stent placement

Holst, *J Thorac Cardiovasc Surg* 2012;144:1257–1259 Sidoti, *JACC Cardiovasc Interv*. 2014 Oct;7(10):e143-4 Grohmann, *Clin Res Cardiol*. 2016 Apr;105(4):323-31 Borik, *Pediatr Cardiol.* 2015 Jun;36(5):1083-9 Brown, *CCI.* 2016 Jul;88(1):103-6 Ferandos, *CCI.* 2009;74:132-136

Airway and Cardiac Disease latrogenic Airway Compression

- Can be a significant problem
 Novel therapies for acute decompensation
- Bronchoscopy
 - Dynamic vascular testing reported
 - High yield described
 - Invasive

Ebrahim, *Cathet. Cardiovasc. Intervent.* 85: 832–836 Truong, *Catheter Cardiovasc Interv.* 2015 Aug;86:1068–1077 Brown, *CCI.* 2016 Jul;88(1):103-6 O'Byrne, *Pediatr Cardiol.* 2016 Mar;37(3):433-41

Airway and Cardiac Disease Diagnosis

- Bronchoscopy
 - High yield
 - Dynamic vascular testing possible
 - Dynamic ventilatory testing possible
 - Invasive
 - Sensitive but not specific
- CT imaging
 - High spatial resolution
 - Airway visualization
 - Minimally invasive / rapid
 - Angiography demonstrates vascular/airway
 - Dynamic ventilatory testing possible
 - Dynamic vascular testing not possible

- Similar attributes as CT imaging
- Protocols same as cardiac 3DRA
 - Multiplanar reformat
 - Post processing minimal
- Dynamic vascular testing possible

Truong, Catheter Cardiovasc Interv. 2015 Aug;86:1068–1077 Borik, Pediatr Cardiol. 2015 Jun;36(5):1083-9

Airway and Cardiac Disease 3DRA Multiplanar Reformat

- 2D slices through 3DRA dataset
- Airway well defined
- Especially in relation to contrast filled vasculature

Borik, *Pediatr Cardiol.* 2015 Jun;36(5):1083-9 Truong, *CCI.* 2015 Aug;86:1068–1077

Double Aortic Arch

Airway and Cardiac Disease 3DRA Multiplanar Reformat

- We postulated utility of 3DRA MPR imaging to define vasculature / airway relationship in selected patients referred for cardiac catheterization
- First used 3DRA specifically to define possible airway anomalies in January 2011
- Subsequently performed retrospective review of patients who underwent 3DRA for this indication
- "What was clinical impact of 3DRA MPR"
- Jan 2011 Nov 2013; 8 patients were identified

Truong, Catheter Cardiovasc Interv. 2015 Aug;86:1068–1077

Patient Demographic and Procedural Data.												
Case	Age	Wt	DAP (mGycm2)	Diagnosis	Treatment History	MPR findings	Bronch	Affect on clinical management				
Clinical Symp	toms											
1	3 y	11kg	1021	IAA-B; Shones; VSD; Resp illnesses	5 major CV repairs	No vascular encroachment on airway; Airway unobstructed	Yes	No*: SVC stented				
Surgical Plani	ning											
2	5 w	3.4kg		Double aortic arch; VSD	None	Double aortic arch; no airway compression	No	Yes: No additional imaging prior to surgical repair				
3	3 у	15.7kg	850	Truncus arteriosus	RV-PA conduit	Criss-cross branch pulmonary arteries; PAs anterior to trachea	Yes	Yes: Planning for posterior pulmonary arterioplasty				
4	7 y	21.4 kg	J 2249	Truncus arteriosus	RV-PA conduit; LPA stent	Criss-cross branch pulmonary arteries; PAs anterior to trachea	No	Yes: Planning for posterior pulmonary arterioplasty				

Truong, Catheter Cardiovasc Interv. 2015 Aug;86:1068–1077

Patient Demographic and Procedural Data.												
Case	Age	Wt	DAP (mGycm 2)	Diagnosis	Treatment History	MPR findings	Bronch	Affect on clinical management				
Interventional Planning												
5	2 y	10.8kg	574	DORV / PA	RV-PA conduit	Posterior compression of the left mainstem bronchus	Yes (CT)	Yes: Conduit balloon angioplasty				
6	2 у	10.3kg	756	Absent pulmonary valve	PA repair; LeCompte	Balloon testing: No airway compression	No	Yes: Stent angioplasty				
7	2 y	10.4kg	475	Double inlet left ventricle	Complex hybrid paliation; Glenn; LPA stent revascularization	Airway relatively distant to stented LPA	No	Yes: Cutting balloon LPA angioplasty				
8	6 y	12.7kg	850	Coarctation of the aorta; Pulmonary sling Complete tracheal rings	;Vascular ring repair; airway reconstructior	Balloon testing: RPA without compression; LPA severely compressed	Yes	Yes: RPA Stent; LPA angioplasty				

Truong, Catheter Cardiovasc Interv. 2015 Aug;86:1068–1077

Truncus Arteriosus; Criss-Crossed PAs

Airway and Cardiac Disease MPR – Left Bronchus Compressed by DAo

DORV / PA; RV-PA Conduit

- Dynamic vascular testing
- 3DRA during LPA angioplasty
- Evaluation of airway compression

Airway and Cardiac Disease MPR – Balloon Test in LPA

Repaired LPA Sling; Tracheal Rings

Airway and Cardiac Disease MPR – Balloon Test in RPA

Repaired LPA Sling; Tracheal Rings

Airway and Cardiac Disease Pulmonary Sequestration

3D IMAGI

Airway and Cardiac Disease 3DRA Multiplanar Reformat

Pediatr Cardiol (2015) 36:1083–1089 DOI 10.1007/s00246-015-1130-8 CrossMark

3D IMAGING

ORIGINAL ARTICLE

Three-Dimensional Rotational Angiography in the Assessment of Vascular and Airway Compression in Children After a Cavopulmonary Anastomosis

Sharon Borik · Sabina Volodina · Rajiv Chaturvedi · Kyong Jin Lee · Lee N. Benson

- Initial qualitative evaluation of airway narrowing
- Qualitative airway narrowing: obliteration or a decrease distally of at least 50% compared to the proximal lumen
- Quantitative assessment of PA and airway diameters by MPR

Airway and Cardiac Disease 3DRA Multiplanar Reformat

- Ten cases with LPA stenosis (83%) also had bronchial stenosis
- Qualitative assessment correlated with quantitative MPR bronchial dimensions:
 - Bronchial stenosis = 4.4 ± 1.6 mm
 - Qualitatively normal bronchus 5.9 \pm 1.1 (p = 0.009)
- All bronchial stenosis found on LPA
- 4 Confirmed by CT or bronchoscopy
- History of Hybrid Palliation and DKS both risk factors

Borik, Pediatr Cardiol. 2015 Jun;36(5):1083-9

Airway and Cardiac Disease 3DRA Multiplanar Reformat Conclusions

- 3DRA MPR assessment of vascular / airway relationships is a useful adjunct to define airway compression
- 3DRA MPR can be used with acute vascular testing
 Balloon angioplasty pre-stent placement
- Less invasive than intraprocedural bronchoscopy
- Radiation exposure is present but appears minimal

Acknowledgements

Children's Hospital Colorado

- Uyen Truong, MD
- Brian Fonseca, MD
- Richard Ing, MD

Le Bonheur Children's Hospital
 -Abdul Hamid Khan, MD
 -Shyam Sathanandam, MD
 -Jason Johnson, MD

Thank you

