PA/VSD/MAPCAs

What a surgeon needs to know

Patrick McConnell, MD Nationwide Children's Hospital

Absolute Surgical Requirements

- Name
- MRN
- Procedure
- Allergies

Things needed to complete a 'Time out'

Overview

- 1. MAPCAs paradigm?
 - Single stage unifocalization vs. central PA growth
 - Clinical status/intra-cardiac anatomy
 - Age, sats, circulation (over/under), genetics
- 2. Pulmonary arterial anatomy/hemodynamics
 - Intrapericardial & intrapulmonary characteristics
- 3. Systemic arterial anatomy/hemodynamics
 - Arch sidedness, MAPCA locations
 - **dual supplied segments
- 4. Mediastinal/pulmonary anatomy
 - Airway, esophagus, veins, adenopathy, lung status

MAPCAs paradigm . . . When in Rome (Spain?)

Paradigm

Single Stage Unifocalization

- Incorporate as many segments into a central PA compartment.
- Unifocalization to the heart/conduit
- Intra-cardiac repair
 - VSD closure +/fenestration
- 3-9 months of age
 - Average is 7-9 months for most series

 Multi-stage or central PA growth focused

- Early cath (< 1mos) to delineate central PAs and MAPCAs
- Surgery (< 3 mos): achieve central PA blood flow
 - RV-PA conduit
 - Central shunt
 - No intracardiac repair vs. fenestrated VSD
- Later catheterizations to control dual supply
 MAPCAs and PA growth
- Surgery (< 2 yo): unifocalize
 & intra-cardiac repair

Surgery & Central PA growth

- MAPCAs and surgically manipulated central PAs fail to grow

Archives of Cardiovascular Diseases, Volume 105, Issue 12, 2012, 666-675

The Annals of Thoracic Surgery, Volume 97, Issue 6, 2014, 2129–2133

Central PAs

- Central PA Present
 - Branch PA sizes
 - Nakata index
 - Define dual-supply MAPCAs
- Not present
 - MAPCA
 circulation/pulmonary
 circulation
 - Confirm by MDCT

5 yo male, unrepaired PA/VSD/MAPCAs. Sats – 72%; Nakata = 155 mm²/m²

MAPCAs

Surgery for Cong Heart Defects. 3rd Edition. Tsang V. Ch 30. Figure 30.11

Retro-Esophageal MAPCAs

- REMs (Stanford 2011-2013)
 - 68 patients
 - 45 (67%) with REM
 - 84% stenotic
 - 80% Intra and 32% extra
 - LAA
 - 77% REM
 - 32% Intra
 - RAA
 - 53% REM
 - 72% Intra

Left Aortic Arch

Right Aortic Arch

The Annals of Thoracic Surgery, Volume 102, Issue 3, 2016, 877-882

REM and Stenosis

The Annals of Thoracic Surgery, Volume 102, Issue 3, 2016, 877-882

Dual Supply/Over-circulation

- Systemic saturations
 - Lower (< 85%)</p>
 - Plan to keep all nonunifocalized segments
 - Later coil/embolize
 - Higher
 - Ligate non (<50%) stenotic collaterals
- Number and location of single-source segments
- If over-circulated pre-op very likely there are adequate central PAs and early repair is indicated.

Value of Advanced Imaging?

Complete Preoperative Evaluation of Pulmonary Atresia with Ventricular Septal Defect with Multi-Detector Computed Tomography. PLoS One. 2016; 11(1).

Table 1

Findings at MD CT, TTE, and Cardiac Catheterization Compared with Findings at surgery.

Parameter	No. of Surgical Findings					Test Parameters				
	Technique	True-	False-	True-	False-	Sensitivity	Specificity	PPV	NPV	Accuracy
		Positive	Negative	Negative	Positive					
Main PA	MDCT	33	0	83	0	100%	100%	100%	100%	100%
	Catheterization	30	3	82	1	90.9%	98.8%	96.8%	96.5%	96.6%
	TTE	26	7	80	3	78.8%	96.4%	89.7%	92.0%	91.4%
Right/ Left PA	MDCT	158	0	74	0	100%	100%	100%	100%	100%
	Catheterization	146	12	74	0	92.4%	100%	100%	86.0%	94.8%
	TTE	112	46	70	4	70.9%	94.6%	96.6%	60.3%	78.4%
PA confluence	MDCT	68	0	48	0	100%	100%	100%	100%	100%
	Catheterization	64	4	48	0	94.1%	100%	100%	92.3%	96.6%
	TTE	53	15	43	5	77.9%	89.6%	91.4%	74.1%	82.8%
PA stenosis	MDCT	18	0	97	1	100%	99.0%	94.7%	100%	99.1%
	Catheterization	15	3	97	1	83.3%	99.0%	100%	97.0%	96.6%
	TTE	11	7	94	4	61.1%	95.9%	73.3%	84.7%	90.5%
Overall native PA	MDCT	277	0	302	1	100%	99.7%	99.6%	100%	99.8%
	Catheterization	255	22	301	2	92.1%	99.3%	99.2%	93.2%	95.9%
	TIE	202	-75	287	16	72.9%	94.7%	92.7%	79.3%	85.9%
MAPCA stenosis	MDCT	96	2	225	3	98.0%	98.7%	97.0%	99.1%	98.5%
	Catheterization	85	13	222	6	86.7%	97.4%	93.4%	94.4%	94.2%
	TTE	NA	NA	NA	NA	NA	NA	NA	NA	NA
PDA	MDCT	47	0	69	0	100%	100%	100%	100%	100%
	Catheterization	47	0	69	0	100%	100%	100%	100%	100%
	TTE	47	0	69	0	100%	100%	100%	100%	100%

Imaging: What is Helpful?

LAO34 CRA1

Zoom:157% W/L:91/89 Segmented

Traditional Outcome

4 mos - preop

5 mos – intra-op

Less > More

1 year post-op

Summary

- Clinical status and the status of the central PAs should dictate palliative strategy.
- MAPCAs need to be defined (+/- stenoses)
 - Dual-supply
 - Single source
 - Mediastinal structures involved
- Diminutive central PAs have growth potential
 - Data/experience demonstrates that surgically manipulated PAs and MAPCAs do not grow.
 - Avoid surgical and stent based interventions in early PA rehab
 - Focus interventions controlling dual sources overtime.
- 3-D rotational angiography would seem less informative than selective MAPCA angios to define location, dual-supply and stenoses and advanced imaging may be value added.

Thank you

When your child needs a hospital, everything matters."

Pre-op sats = 72%

Post-op sats = 93%