

How Do I Reduce Radiation Exposure During 3DRA? Shyam K. Sathanandam

I have no financial relationships with any commercial interest related to the content of this presentation.

Radiation Exposure – Cancer Risk

Children's Hospital

RISK: Deterministic versus Stochastic

Single-Site Acute Skin-Doses:

< 2 Weeks: None 2 – 52 Weeks: None Permanent: None

< 2 Weeks: Erythema 2 – 52 Weeks: Epilation Permanent: None

5-10 Gy

< 2 Weeks: Erythema 2 – 52 Weeks: Prolonged/Permanent Erythema/Epilation Permanent: Dermal Atrophy

>10 Gy

< 2 Weeks: Erythema/Ulceration 2 – 52 Weeks: Desquamation Permanent: Surgery

Radiation Exposure – Cancer Risk

400

Jepatobiliary i

Gated CT Anel

Johnson JN, et al. Circulation. 2014;130:161-167.

oroscopt

Radiation Exposure – Fluoro Time

Inadequate Estimation of Radiation Exposure

Definitions

Air Kerma (Gy) - Kinetic Energy Released per unit Mass
 Sum of the kinetic energies of all the charged particles liberated by ionizing radiation absorbed in a sample of matter, divided by the mass of the sample.

♥ **Dose Area Product (Gy·cm²)** – Absorbed dose multiplied by the area irradiated.

Effective Dose (Sv) – Multiplying the average organ dose by tissue weighting factor and summing the results over the whole body. Used by *ICRP* – Probability of cancer.

1Gy (A physical quantity) = 1Sv (A biologic effect)

- 1 Gy is the deposit of a joule of radiation energy in a kg of tissue.
- The Sievert represents the equivalent biological effect of the joule of radiation energy in a kilogram of tissue.

Dose Metrics: Air Kerma and DAP

[†]Assumes Patient Surface is Equivalent to 30cm Sphere

*21CFR1020.32 – Air Kerma Mandatory for Fluoroscopic Equip. after 6/10/2006 Accuracy Tolerance: ± 35%

Actual Patient Location May Deviate from the Reference Point Location

Summary of Reference Point Locations

Summary of Reference Point Locations

ORIGINAL ARTICLE

Congenit Heart Dis. 2016;00:00-00

Radiation Protocol for Three-Dimensional Rotational Angiography to Limit Procedural Radiation Exposure in the Pediatric Cardiac Catheterization Lab

Lauren Haddad, MD,* B. Rush Waller, MD,[†] Jason Johnson, MD,[†] Asim Choudhri, MD,[‡] Vera McGhee, BS,[§] David Zurakowski, PhD,[¶] Andrew Kuhls-Gilcrist, PhD,** and Shyam Sathanandam, MD[†]

• 2 Anthropomorphic phantoms of different sizes were used to set up our 3DRA protocols

Ser 6			
DefForm [M:\Radiation research\PCXMC\Simulations\Siemens_Var	idy\Final_NB_7inch Memp	ohisDF2.DF2]modifie	d
File			
👖 Main menu 🔅 New Form 🔄 🗠 Open Form	Save Form	ve Form <u>A</u> s	📇 Print As Text
Monte Carlo data for this definition file have already been generated	d		
Header text NB Memphis			
,			
Phantom data			
Age:Phantom he	ight Phantom mass		
● 0 ○ 1 ○ 5 ○ 10 ○ 15 ○ Adult 51.00	3.50	Arms in phantom	
Standard: 50	.9 Standard: 3.4		
	r		
Geometry data for the x-ray beam		 Draw x-ray lielu 	
ESD Beam width Beam height Xref Yref	Zref		
77.00 8.57 8.57 -0.8650 4.121	6 16.0888	Draw	
	,		
Projection angle Cranio-caudal angle		<u>U</u> pdate Field	
30.00			
LATR=180 AP=270 (pos) Cranial X-ray tube		Stop	
LATL=U PA=90 (neg) Caudai X-ray tube			
MonteCarlo simulation parameters			Botation increment 🗐 30 🔤 View angle 🛛
Max anarov (ka)/a Number of photops			
150 20000			
Field size calculator	Skeleton	 Pancreas 	
FID Image width Image height	leart	✓ Uterus	
110 18 24 Calculate	✓ Testes	 Upper large intestin 	e
	Spleen	 Lower large intesting 	
Phantom exit- image distance: ^{5.0}	✓ Lungs	 Small intestine Thyroid 	
ESD Boemwidth Boem hoight	✓ Kidneys	 Urinary bladder 	
Use this data	Thymus	 Gall bladder 	
	Stomach	 Oesophagus 	
	✓ Salivary glands	 Prostate Pharyny/trachea/sig 	
	i starmaooda j		

Protocol	≤30 kg	> 30kg
Frame Rate (frames/sec)	25	25
C-Arm rotation	206°	206°
Tube Voltage (kV)	73	73
Tube Current (mA)	564	564
Pulse Width (ms)	3.7	3.7
Field of View (inches)	8	12
Source to image distance (cm)	110	120
Delay time (sec)	1	1
Rotation Time (sec)	4.1	4.1
AEC dose (µR)	150 dose rate ≈ 0.033 mGy/sec	$\frac{250}{\text{dose rate} \approx 0.055 \text{ mGy/sec}}$

PHANTOM IMAGING

Comparison of radiation to perform rotational and bi-plane imaging

Table 1. Phantom Imaging: Comparison of Radiationand Parameters to Perform Rotational and BiplaneImaging

		3DRA,	2DDA,	
	Phantom Data	$\text{Mean} \pm \text{SD}$	$\text{Mean} \pm \text{SD}$	P Value
	DAP (cGy/cm ²)	32.8 ± 16.8	23 ± 14.8	.24
	Air Kerma (mGy)	1.6 ± 0.7	1.2 ± 0.46	15
1	Measured skin	0.16 ± 0.04	$\textbf{0.15}\pm\textbf{0.03}$	(.76)
-	dose (mSv)			\bigcirc
/	Effective radiation dose calculated by	0.13 ± 0.01	0.1 ± 0.02	.31
1	simulation (mSv)			
	Tube voltage (kV)	87.6 ± 1	67.2 ± 4.2	.30
	Tube current (mA)	39.75 ± 15.5	115.25 ± 6.1	.001

- 2 Anthropomorphic phantoms of different sizes were tested using the two 3DRA protocols and five 2DDA protocols, twice on each phantom.
- The 2DDAs were performed at 15-frames/s for 5-seconds.
- This generated eight 3DRA and twenty 2DDA datasets for comparison.

PATIENT STUDY AND CONTROL GROUPS Comparison of demographics, angiographic sites and procedure types

Table 2. Patient Study and Control Group: Comparisonof Demographics, Angiographic Sites, and ProceduralTypes

Variable	3DRA Group (<i>n</i> = 100)	2DDA Group (<i>n</i> = 100)	P Value
Age (years)	10.2 (1.12–43.87)	9.98 (0.33–39.52)	.239
Sex, M:F (n)	59:41	53:47	.114
Height (cm)	145	135.5	.207
	(69–181)	(59–181)	
Weight (kg)	39.8	35.6	.146
	(8.3–118.2)	(5–115.6)	
Body surface	1.23	1.09	.103
area (m ²)	(0.4-2.33)	(0.28-2.3)	
Site			.420
Aorta	16	10	\smile
BDG/Fontan	18	24	-
Right/left ventricle	66	66	
Diagnosis			<.001*
CTA	52	36	
COA	15	6	$\langle \rangle$
SV	14	48	
PPS	19	10	-
Intervention			.007†
Melody valve	18	5	
COA stent	12	6	
PA stent	21	12	\smile
PA plasty	24	33	
Other	4	19	
None	21	25	

*Significantly more single ventricle patients in the 2DDA group. †Significantly more stent implantation procedures in the 3DRA group. BDG, bidirectional Glenn; COA, coarctation of aorta; CTA, conotruncal anomalies; PA, pulmonary artery; PPS, peripheral pulmonary artery stenosis; SV, single ventricle.

- During a 2 year study period, a total of 144
 3DRAs (19% of all cardiac catheterizations) were performed; 100 were included in the study.
- The 2DDAs were performed at 15-frames/s.

PATIENT STUDY

Comparison of radiation to perform a 3DRA vs. a 2DDA and total procedural radiation

Table 3. Patient Study and Control Group: Comparison of Radiation and Parameters to Perform Rotational and Bi-plane

 Imaging and Total Procedural Radiation

Radiation Parameters	3DRA Group, Median (IQR), <i>n</i> = 100	2DDA Group, Median (IQR), <i>n</i> = 100	<i>P</i> Value
Duration of single 3DRA/2DDA (seconds)	4.1	4.9 (3.8-6.2)	.12
DAP for a single 3DRA/2DDA (cGy/cm ²)	278 (107–595)	241 (124–760)	.14
Indexed DAP for a single 3DRA/2DDA (cGv/cm ² /m ²)	287 (147-428)	218 (130-732)	42
Effective dose by Monte-Carlo simulation (mSv)	0.8 0.2-1.8)	0.67 (0.08-3.7)	(.22)
Total procedural DAP (cCy/cm ²)	3665 (1679–18 033)	3544 (1186–10761)	45
Total procedural indexed DAP (eGy/cm ² /m ²)	3348 (1885–9383)	3176 (1537-7778)	.48
Total procedural Air Kerma (mGy)	(250)(146-816)	(265)121–531)	.21
Total procedural indexed Air Kerma (mGy/m ²)	244 (170–578)	249 (174–500)	.79

Table 5. Patient Study and Control Group: Comparison of Contrast Volumes and Other Procedural Data

Contrast and Procedural Data	3DRA Group, Median (IQR), n = 100	2DDA Group, Median (IQR), n = 100	<i>P</i> Value
Single 3DBA/2DDA contrast volume (ml /kg)	1 59 (1 0-1 9)	1 01 (0 5–1 2)	< 001
Total procedural contrast volume (mL/kg)	3.8 (2.9–5.3)	4 (2.5–5.2)	.494
Number of cine-angiograms	7 (4–12)	11 (7–15)	<.001
Total fluoroscopy time (min)	30.8 (17–55)	42.3 (30–60)	.023
Length of procedure (min)	140 (110–207)	161 (135–217)	.106

Conversion factor for DAP to mSv for 3DRA for various age group and Life time attributable cancer risk from 3DRA

Table 4. Conversion Factors Determined Using Patient-Specific Monte-Carlo Calculations to Enable Approximation of the Effective Dose (ED) From 3DRA by Using the DAP Provided by the System

Age Categories (yrs)	Average Weight (kg)	Number of Patients	Slope (mSv/cGy/cm²)	Intercept (mSv)	R ²	Average DAP (cGy/cm ²)	Average ED* (mSv)	Attributable Life-Time Cancer Mortality Risk ²² † (% per Sv)
<1	12.2	10	0.0124	0.22	0.96	111	0.60	16
1–5	16.5	28	0.0141	-0.15	0.96	128	0.65	16
5–10	44.0	21	0.0035	0.73	0.88	384	1.08	13
10–15	67.3	30	0.0025	0.74	0.75	650	1.38	10
>15	77.7	11	0.0017	2.11	0.45	1094	2.36	4

*mSv/cGy/cm² conversion factors (ED = DAP \times slope + intercept).

[†]National Research Council. *Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2.* Washington, DC: The National Academies Press, 2006

- Chest X-Ray 0.02 mSv
- Roundtrip flight NY-LA 0.03 mSv
- Annual US background radiation 3 mSv
- CT angio 2-12 mSv
- Annual limit for radiation workers (10 CFR 20.1201) 50 mSv

OBJECTIVES

- Evaluate variability in image quality and radiation dose parameters across:
 - Generations of fluoroscopy equipment
 - Fluoroscopy equipment vendors

APPROACH: Vendor assessments

Institution	Fluoroscopy vendor	Model	Installation date
Α	Philips	Allura Xper FD 10/10	2004
Α	Phillips	Allura Clarity	2014
В	Siemens	Artis Q	2014
С	Toshiba	Ultimax	2012
D	GE	Innova	2013

Simulated neonatal cardiac catheterization

(20min fluoroscopy time, 4 biplane acquisitions)

Institutional imaging parameters used to calculate doses: 5 / 7.5 fps for fluoroscopy/cineangiography except for the older generation Phillips Xper system (only allows 15 fps). The institution using the Toshiba system uses fluoro-save for acquisitions.

Conclusions

- New generation equipment vastly superior
- Vendor differences in dose and image quality
- Institutional variability in "set-up"
 - These data can help guide standardized institutional approaches to limit dose while maintaining safe Image Quality

3D-DA

3D-DSA

Protocol	≤30 kg	> 30kg
Frame Rate (frames/sec)	15/15	15/15
C-Arm rotation	206°	206°
Tube Voltage (kV)	60/73	60/73
Tube Current (mA)	564	564
Pulse Width (ms)	3.7	3.7
Field of View (inches)	8	12
Source to image distance (cm)	110	120
Delay time (sec)	1	2
Rotation Time (sec)	4.1	4.1
AEC dose (µR)	150 dose rate ≈ 0.033 mGy/sec	$\frac{250}{\text{dose rate} \approx 0.055 \text{ mGy/sec}}$

3D-DSA vs. 3D-DA

In Patients < 2 years of age

Variable	3D-DSA (n=15)	3D-DA (n=15)	P-Value
Mean Age (months)	14 ± 5	15 ± 6	0.239
Weight (Kg)	14.4 ± 2.5	12.2 ± 2.4	0.114
BSA (m ²)	0.42 ± 0.22	0.44 ± 0.08	0.103

3D-DSA vs. 3D-DA Comparison of Radiation and Contrast Dose in

Children < 2 Years

Variable	3D-DSA (n = 15)	3D-DA (n = 15)	P-Value
Mean Dose-Area product (cGy.cm ²)	188 ± 51	128 ± 141	0.143
Mean Air Kerma (mGy)	21.7 ±17.7	11.4 ± 2.8	0.104
Mean Contrast Dose (mL/Kg)	1.02 ± 0.1	1.81 ± 0.2	<0.001*

3D-DSA vs. 3D-DA Comparison of Total procedure Radiation and Contrast Dose in Children < 2 Years

3D-DA 3D-DSA Variable **P-Value** (n=15)(n=15)**Procedure length (min)** 140 ± 30 144 ± 29 0.722 **Duration of radiation (min)** 38 ± 11.6 39.7 ± 12.4 0.365 Total procedural DAP (cGy.cm²) 442 + 162 0.173 543 ± 299 Total procedural Air Kerma (mGy) 0.1 144 ± 56 95 ± 38 2.85 ± 0.76 5 ± 2 <0.001* **Procedural contrast volume (mL/Kg)**

3D-DSA vs. 3D-DA

Diagnostic Quality and Utility Scores

	3D-DSA (%)	3D-DA (%)	P-Value
Rotational Angiography	86	84	0.32
Multi-planar Reformation	84	88	0.12
3D Reconstruction	79	86	0.14
3D Road Mapping	88	89	0.36

3DRA Fusion

Multi-Modality Fusion (MMF) Radiation reduction

Multi-Modality Fusion (MMF) Patient Demographics

Comparison of 3DRA, MR and CT Fusion

Variable	3DRA-Fusion (n=25)	MR-Fusion (n=25)	CT-Fusion (n=25)	P-Value
Age (years)	9.8 ± 5.5	10.2 ± 6.3	11.1 ± 7.2	0.39
Weight (Kg)	26.6 ± 11.4	28.4 ± 12.3	30.3 ± 14.5	0.46
BSA (m ²)	1.02	1.08	1.2	0.11

Multi-Modality Fusion (MMF) Radiation reduction

Multi-Modality Fusion (MMF)

Procedure Times, Radiation and Contrast Dose

Variable	3DRA-Fusion (n=25)	MR-Fusion (n=25)	CT-Fusion (n=25)	P-Value
Radiation (min)	21.8 ± 12.2	18 ± 9.7	19.4 ± 10.4	0.04
# of angiography	7.2 ± 3.8	5.4 ± 4.7	6.8 ± 3.6	0.52
Dose-Area (cGy.cm ²)	4101 ± 1382	2454 ± 1113	5607 ± 2465	0.01
Air Kerma (mGy)	654 ± 224	499 ± 189	806 ± 328	0.01
Contrast (mL/Kg)	4.9 ± 3.1	(2.7 ± 2.4)	5.9 ± 3.8	<0.001
Procedure (min)	214 ± 93	163 + 38	167 ± 42	0.03
Anesthesia time (min)	258 ± 112	(384 ± 174)	213 ± 98	<0.001

Multi-Modality Fusion (MMF) Radiation reduction

Multi-Modality Fusion (MMF)

Satisfaction Scores Among Operators and Independent Observers

Overall Satisfaction Scores (%)	3DRA-Fusion (n=15)	MR-Fusion (n=15)	CT-Fusion (n=10)	ANOVA P-Value
Operators	90 ± 6	82 ± 12	84 ± 10	0.33
Independent Observers	91 ± 5	96 ± 2	92 ± 4	0.74
Paired T-Test	0.75	0.029*	0.637	
ICC-Correlation	0.962	0.401	0.766	
P-Value	<0.001*	0.26	0.11	

Summary

- ✤3DRA can be performed with low dose radiation.
- Tomographic imaging acquired from rotational angiography can help decrease the overall procedural radiation and contrast dose.
- ✤ 3D-DSA can limit contrast volume required for imaging.
- 3DRA-Fusion is more reliable than MR or CT fusion and can therefore limit the number of angiograms required during complex interventions, thereby limiting total procedural radiation.

Acknowledgements

Tom Fagan, MD Benjamin Rush Waller III, MD Jason Johnson, MD Kim Allen, RN Asim Choudhry, MD

TOSHIBA Leading Innovation >>>

Andrew Kuhls-Gilcrist, PhD

Kevin Hill, MD MSCI

