

To Tell the Truth: "Will the Real Measurement Please Stand Up?"

Thomas E. Fagan, MD

University of Tennessee Heath Science Center Memphis, Tennessee

Disclosures

Philips Healthcare:

Grant support

Speaking Bureau / Teaching

Asked for Clarification of the Topic

- "Is measuring off of 3D reconstruction accurate or do we need to use MPRs?"
- "Do we need 2D angio also to get pulsatility?"
- "Which is the "real" measurement?"
- 'Is 3D "good enough" '

Cardiovascular Quantification 3-DRA Reconstruction

Cardiovascular Quantification 3-DRA Reconstruction

- QA: "Examination of measurable and verifiable data"
- Requirements in CV QA
 - Clear visualization of structures of interest
 - Spatial resolution
 - Temporal resolution
 - Impact of 2D vs. 3D datasets
 - Measurement tools
 - Accurate
 - Reproducible
 - Simple to use

Cardiovascular Imaging

- Spatial resolution: "Ability of the imaging modality to differentiate between two objects"
- Temporal resolution: "Duration of time for acquisition of a single frame of a dynamic process"

Table 1							
Spatial, contrast, and temporal resolutions of cardiac imaging methods							
	Spatial resolution (FWHM), mm	Contrast resolution	Temporal resolution				
CT	0.5-0.625	Low to moderate	83-135 ms				
MRI	1-2	High	20-50 ms				
Catheter angiography	0.16	Moderate	1-10 ms				
PET	4-10	Very high, varies	5 s to 5 min				
SPECT	4-15	Very high, varies	15 min ^{8.}				
Echocardiography	~0.5-2	Low to moderate	>200 frames/s (<5 ms)				
Echocardiography	~0.5-2	Low to moderate	>200 frames/s (<5 r				

3D II3

2-Dimensional datasets

3D II3

2-Dimensional datasests

3-Dimensional datasets (Not 3-D reconstruction)

Courtesy of Brian Fonseca, MD

- Interventionalist's perspective
 - Standards for measurement derived from stationary projection angiography
 - Management decisions based on largest dimension of the cardiovascular structure of interest
 - Systole for arteries and valves
 - Diastole for VSD

- Echocardiography
 - Advantages
 - Very high temporal and reasonable spatial resolution
 - Readily obtainable
 - Measurement tools facile and accurate
 - Disadvantages
 - 2-Dimensional imaging

cMR / CT

- Advantages
 - High spatial and acceptable temporal resolution
 - 3-Dimensional dataset imaging
 - Measurement tools facile and accurate

- Disadvantages
 - Non-gated or gated to diastole

- Static projection digital cineangiography ("Planimetry")
 - Advantages
 - It is our "gold standard"
 - Extremely high spatial resolution and high temporal resolution
 - Can choose specific point in cardiac cycle
 - Measurement tools facile and accurate (Auto-calibration*)
 - Disadvantages
 - 2-Dimensional quantification*
 - Area obscured by other contrast filled structures
 - Calibration (object of known dimension) may be required

Cardiovascular Quantification Static Projection Angiography

3D II3

2-Dimensional Quantification

Cardiovascular Quantification 3DRA Reconstruction

- 3-Dimensional image dataset
- High spatial resolution but low temporal resolution
- Overcomes some limitations of static angiography

Tetralogy of Fallot with RPA Stenosis

Cardiovascular Quantification 3-DRA Reconstruction

3D II3

Signal averaged image dataset

Window leveling

Commandment of Imaging Quantification

Thou shalt not make measurements from 3-dimensional reconstructions!

Commandment of Imaging Quantification

Thou shalt not make measurements from 3-dimensional reconstructions!

Cardiovascular Quantification 3DRA Multiplanar Reformat

3-Dimensional image dataset

Signal averaged imaging

Cardiovascular Quantification 3DRA Multiplanar Reformat

Window leveling

Catheterization and Cardiovascular Interventions 80:922–930 (2012)

The Use of Three-Dimensional Rotational
Angiography to Assess the Pulmonary Circulation
Following Cavo-Pulmonary Connection in Patients with
Single Ventricle

Darren P. Berman,* MD, Danyal M. Khan, MD, Yunin Gutierrez, cvr, and Evan M. Zahn, MD

- Found correlation MPR and static angiograms (n= 33 studies)
 - RPA: correlation coefficient 0.94 (P < 0.001)
 - LPA: correlation coefficient 0.97 (P < 0.001)
- Alignment of MPR vessels with angio projections not performed*
- CPCs; non-pulsatile vessels and some paced
 - Expect to correlate better than in pulsatile vessels

Cardiovascular Quantification 3DRA Multiplanar Reformat

Pediatr Cardiol (2015) 36:1083–1089
DOI 10.1007/s00246-015-1130-8

ORIGINAL ARTICLE

Three-Dimensional Rotational Angiography in the Assessment of Vascular and Airway Compression in Children After a Cavopulmonary Anastomosis

Sharon Borik · Sabina Volodina · Rajiv Chaturvedi · Kyong Jin Lee · Lee N. Benson

- Studied correlation MPR and static angiograms (n= 25 studies)
 - Branch PA measurements correlated well
 - SVC and prox RPA: poor to moderate correlation
- Alignment of MPR vessels with angio projections not specified*
- CPCs; non-pulsatile vessels
 - Expect to correlate better than in pulsatile vessels

^{*} using two-dimensional tomographic slices created by the intersection of the parallel and perpendicular planes at each reference point.

Cardiovascular Quantification 3DRA Multiplanar Reformat

Table 2 Correlation between measurements on 3DRA-derived tomographic images and 2D angiography

Vessel	2D angiography (mm)	3DRA (mm)	Correlation coefficient (r)	p value
Proximal LPA	9.6 ± 2.3	9.6 ± 1.7	0.81	< 0.0001
Narrowest LPA	7.7 ± 2.5	8.0 ± 2.1	0.89	< 0.0001
Distal LPA	7.7 ± 2.5	7.8 ± 2.0	0.83	< 0.0001
Proximal RPA	10.0 ± 1.8	10.2 ± 1.7	0.28	0.30
Distal RPA	8.7 ± 1.4	8.5 ± 1.6	0.75	0.001
SVC	11.4 ± 2.1	12.4 ± 1.9	0.50	0.06

Measurements listed as mean ± standard deviation

Abbreviations as in Table 1; RPA right pulmonary artery, SVC superior vena cava

- Pulsatile vessels:
 - Image blur may represent systolic dimensions
 - Alignment of vessels with control imaging cumbersome

Cardiovascular Quantification 3DRA Maximal Intensity Projections

Pediatr Cardiol (2016) 37:528–536
DOI 10.1007/s00246-015-1310-6

ORIGINAL ARTICLE

Three-Dimensional Rotational Angiography in the Pediatric Cath
Lab: Optimizing Aortic Interventions

Anna Stenger¹ · Sven Dittrich¹ · Martin Glöckler¹

- Assessed correlation of static projection angiograms to MIP (n=60 pts)
 - Location of aortic measurement
 - Correlated angulation of MIP to the aortic arch projection
 - Both systolic and diastolic angio aortic diameters
 - Controlled window leveling of the MIP images

Cardiovascular Quantification 3DRA Maximal Intensity Projections

Window leveling

Cardiovascular Quantification 3DRA Maximal Intensity Projections

Correlation of measurements (n = 60)

 $(r = 0.99 after Pearson, p\0.0001)$

Cardiovascular Quantification 3DRA Maximal Intensity Projections

"Our optimized measurement methodology is likely to be a reason for (the high correlation) result. Also the variation in vessel diameter between systole and diastole of about 6 % appears clinically not relevant."

"Thus, we assume that quantitative 3D vessel measurements are of at least similar precision as measurements taken with conventional 2D angiographies."

Cardiovascular Quantification 3DRA – Original Question

- Is quantification from 3DRA reconstructions "accurate"?
 - Reliability questionable!
- Is quantification from 3DRA "adequate"?
 - We need further study
 - Reasonable studies can be undertaken; esp. MPR and MIP

Cardiovascular Quantification 3-DRA Reconstruction

Cardiovascular Quantification 3-Dimensional Rotational Angiography A Current Strategy

- 3DRA performed
- Use 3DRA reconstruction and MPR
 - Anatomical diagnostics*
 - Define optimal projection for further work
- QA performed on rotational angiogram if adequate projection (calibration)
- If RA not adequate, QA performed on "optimized" angiogram

Cardiovascular Quantification 3-Dimensional Rotational Angiography Conclusions

- Quantification can be performed on rotational angiograms if calibration adequate
- MPR and MIP may be useful but requires further investigation and different clinical settings
- There may be a potential roll for quantification of 3DRA reconstructions, but there are significant hurdles to overcome

Acknowledgements

- Brian Fonseca, MD
- Jason Johnson, MD
- Michael Ross, MD
- Shyam Sathanandam, MD
- Martijn van der Bom

Thank you

Cardiovascular Quantification 3DRA Multiplanar Reformat

Pediatr Cardiol (2015) 36:1083–1089
DOI 10.1007/s00246-015-1130-8

ORIGINAL ARTICLE

Three-Dimensional Rotational Angiography in the Assessment of Vascular and Airway Compression in Children After a Cavopulmonary Anastomosis

Sharon Borik · Sabina Volodina · Rajiv Chaturvedi · Kyong Jin Lee · Lee N. Benson

- Studied correlation MPR and static angiograms (n= 60 studies)
 - RPA: correlation coefficient 0.94 (P < 0.001)
 - LPA: correlation coefficient 0.97 (P < 0.001)
- Alignment of MPR vessels with angio projections not performed*
- CPCs; non-pulsatile and some paced
 - Expect to correlate better than in pulsatile vessels