Optimizing Aortic Interventions with 3DRA

Sven Dittrich Martin Glöckler Department Pediatric Cardiology

ich-Alexander-Universität

Frlanger

200 Jahre Universitätsklinikum Erlangen

1815-2015

Erlangen

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG MEDIZINISCHE FAKULTÄT 1002-2016 **273 Jahre** University 1743-2016

1014 Jahre urban settlement

No conflict of interest Disclosure: Cooperation with SIEMENS and MATERIALIZE

- coarctation +/- hypoplastic arch segments
- re-coarctation +/- presence of patches or aneurysms after surgery
- infant hypoplastic left heart / Norwood procedures

- coarctation +/- hypoplastic arch segments
- re-coarctation +/- presence of patches or aneurysms after surgery
- infant hypoplastic left heart / Norwood procedures
- balloon angioplasty
- implantation of stent / covered stent

- coarctation +/- hypoplastic arch segments
- re-coarctation +/- presence of patches or aneurysms after surgery
- infant hypoplastic left heart / Norwood procedures
- balloon angioplasty
- implantation of stent / covered stent
- perfect interventional result
- no gradient, no complication

short procedure time, no or low radiation exposure

IINIVEDSITÄT

ERLANGEN-NÜRNBERG

- perfect interventional result
- no gradient, no complication
- short procedure time, no or low radiation exposure
- access (retrograde/antegrade)
- wire position
- stent / balloon dimensions (length, diameter)
- choice of material (balloon pressures, cell design ...)
- perfect position control during the whole procedure

Theoretical benefit of 3DRA for aortic intervention

- strategy of access and positioning in 3D model
- selection of material in 3D model
- support position control during procedure
- safe radiation exposure and procedural time

Glöckler M, Halbfaβ J, Koch A.M, Achenbach S, Dittrich S. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease—a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 2013; 82(3):436-442

3DRA is only one possibility to create a 3D-dataset

- 3D-echocardiography
- MRI
- CT

3DRA is only one possibility to create a 3D-dataset

- 3D-echo
- MRI
- CT
- special advantages of a particular imaging technique?
- 3D-3D or 3D-2D -registration for the dataset?
- registration for 1 or for 2 C-arms?

Workflow for the registration of 3D-datasets for projection on the fluoroscopy screen

3D-3D

Stenger A, Dittrich S, Glöckler M. Three-Dimensional Rotational Angiography in the Pediatric Cath Lab: Optimizing Aortic Interventions. Pediatr Cardiol 2016 Mar;37(3):528-36

Workflow for the registration of 3D-datasets for projection on the fluoroscopy screen

FRIEDRICH-ALEXANDER

UNIVERSITÄT ERLANGEN-NÜRNBERG MEDIZINISCHE FAKULTÄT

3D-2D-Overlay (Monaco Workstation, Siemens)

Overlay: Flat-detector cone beam CT (3DRA)

<u>Glöckler M, Koch A, Greim V, Shabaiek A, Rüffer A, Cesnjevar R, Achenbach S, Dittrich S</u>. The value of flat-detector computed tomography during catheterisation of congenital heart disease. <u>Eur</u> Radiol 2011; 21(12):2511-2520.

Overlay: MRI

Poor temporal resolution

Lower spatial resolution

Acquisition pre-procedure

Glöckler M, Halbfaβ J, Koch A.M, Achenbach S, Dittrich S. Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease—a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 2013; 82(3):436-442

Overlay: CT

high temporal resolution

high spatial resolution

Acquisition pre-procedure

DS-CT 1600g, 3ml contrast, 0.1mSv

Glöckler M, Halbfaß J, Koch A, Dittrich S, Achenbach S, Rüffer A, Ihlenburg S, Cesnjevar R, May M, Uder M, Rompel O. Preoperative assessment of the aortic arch in children younger than 1 year with congenital heart disease: utility of low-dose high-pitch dual-source computed tomography. A single-centre, retrospective analysis of 62 cases. Eur J Cardiothorac Surg. 2014 Jun;45(6):1060-5

Technical evolution of CT

DSCT in CHD today

- 70 kV-setting
- New dose reduction techniques
 - ECG- and anatomic-based tube current modulation
 - Iterative reconstructions
 - New detector technologies
- Effective dose <0.5mSv^[1]
- Free breathing
- Nearly no sedation

Effective Radiation Dose (mSv) [2]X-Ray0,02Diagnostic catheter4.6Interventional
catheter6.0Rotational
angiography0.2-0.4

- Rompel, O., M. Glöckler, R. Janka, S. Dittrich, R. Cesnjevar, M. M. Lell, M. Uder and M. Hammon. "Third-Generation Dual-Source 70-Kvp Chest Ct Angiography with Advanced Iterative Reconstruction in Young Children: Image Quality and Radiation Dose Reduction." Pediatr Radiol, (2016).
- 2. Bacher, K., E. Bogaert, R. Lapere, D. De Wolf and H. Thierens. "Patient-Specific Dose and Radiation Risk Estimation in Pediatric Cardiac Catheterization." *Circulation* 111, no. 1 (2005)

Visualization forms

Hausmann,...M. Glöckler. "Application of Dual-Source-Computed Tomography in Pediatric Cardiology in Children within the First Year of Life." *Rofo* (2016)

Hypoplastic left heart syndrome

Newborn; 3.2kg; female

Hypoplastic left ventricle

Bilateral pulmonary banding at 5th day

cardiac DSCT (3rd generation)

Preparing the arterial duct stenting

Preparing the image fusion

Segmentation of specific fiducial markers

Image fusion

Image fusion

3D-Guidance during Catheterization

Duct-Stenting

Case 2: Stenting an Aortic Coarctation (CoA)

16 year old girl, 65kg

Severe mitral regurgitation

Elongated Aorta with CoA

Aortic coarctation

Coarctation of the aorta

UNIVERSITÄT ERLANGEN-NÜRNBERG **MEDIZINISCHE FAKULTÄT** Erlangen

Coarctation of the aorta

Coarctation of the aorta

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG MEDIZINISCHE FAKULTÄT

Accuracy of STL-Models

(3rd generation DSCT)

Odao	
OLULV	
Orpa	

mm	Mean	Min	Max
MIP	-0.1	-0.51	0.34
VRT	-0.3	-0.95	0.41
STL	0	-0.51	0.51

Glöckler, M.; Hammon M.; Rompel O., 2016; unpublished

3D-2D registration, trachea as fiducial marker (n=50)

Deviation of aortic diameter; A- and B-Plane (%)				
	A-plane	B-plane		
Median	7.5	9.1		
Min-Max	4.5-25.3	1.1-29.7		

Comparison of Aortic Interventions with and without 3D-Guidance

Parameter	2D-3D group	Without 3D	Significance
Ν	13	20	
Male (n (%))	9 (69.2)	15 (75)	
Age (yrs)	18.1 (0.2-47.1)	14.5 (7.8-29)	
Height (cm)	170.9 (50-186)	168 (130-186)	
Weight (kg)	68 (4-85)	56.2 (31.5-85.5)	
Total contrast-medium/wt (ml/kg)	0.96 (0.51-7.67)	1.85 (1-4.4)	<0.01 (U-test)
Dose-area product total (µGy/m²)	938.8 (30.6-3645.5)	1942 (599-6298)	<0.02 (U-test)
Fluoroscopy time (min)	4.5 (1.4-12.8)	10.2 (6.4-32.4)	<0.01 (t-test)

Own data for the use of the different overlay techniques (Ped Cardiol Erlangen)

3D roadmaps optimize aortic interventions with

- models to optimize the interventional strategy
- providing proper orientation during the whole procedure
- best with segmented surface-overlays (STL)
- saving radiation time

