From 3D to 4D Rotational Angiography : Technical Feasibility and Clinical Value

Gregor Krings

University Medical Centre, Utrecht, Netherlands

Oliver Taubmann, Andreas Maier Friedrich-Alexander University, Erlangen, Germany

Günter Lauritsch

Siemens Healthcare GmbH, Forchheim, Germany

- Gregor Krings : consultant Edwards, Medtronic Advisory Board Siemens
- Oliver Taubmann is supported by Siemens Healthcare.
- Günter Lauritsch is employee of Siemens Healthcare.

What do the candies and 4DRA have in common ?

both are sweet ! these you can buy !

Disclaimer

both are sweet ! these you can buy !

The 4DRA concepts and information presented in this talk are based on research and are not commercially available

Introduction

3DRA is routine today

3DRA is **static**

4DRA is dynamic

"Imaging of dynamic nature of the heart with congenital defects in the cath-lab"

Introduction

4DRA

Vision – Feasibility – Clinical Use

Demonstration of first results of

4DRA Feasibility study

University of Erlangen

Siemens

UMC Utrecht, Children's Heart Center

By courtesy of Daphne Yu, Siemens Medical Solutions USA, Inc., Princeton, NJ

ECG Gating – Angular Undersampling

Few Samples Only for Preliminary Reconstruction of Cardiac Phases

Preliminary images are reconstructed from few projection data only for motion estimating. The pre-images are strongly degraded by artifacts.

Reconstructed Phases

Motion Compensation – Reconstruction of Phase 1

Motion Compensation – Reconstruction of Phase 2

Motion Compensation – Reconstruction of Phase 3

Motion Compensation – Making Use of All Data

Usage of Pacing

Baby

Trade-off in 4DRA Imaging Protocol

4DRA Protocol – Utrecht Cookbook

Case 1: Single Ventricle

10kg, PA, Melbourne shunt Pacing 210/min, cycles 18, acquisition 5 sec, DAP 63 (242) µGym²

Case 1: Single Ventricle

Pacing 210/min, cycles 18, acquisition 5 sec, DAP 63 (242) µGym²

Case 2: Pulmonary Artery Stenoses

15 kg, PA VSD, Y stent PA Bifurcation Pacing 140/min, cycles 12, acquisition 5 sec, DAP 129 (305) μGym²

Case 2: Pulmonary Artery Stenoses

Pacing 140/min, cycles 12, acquisition 5 sec, DAP 129 (305) µGym²

Case 3: Aortic Coarctation

33 kg, HLHC, IAA, Norwood Rastelli, Pacing 170/min, cycles 14, acquisition 5 sec, DAP 615 (1493) μGym²

Case 3: Aortic Coarctation

Pacing 170/min, cycles 14, acquisition 5 sec, DAP 615 (1493) µGym²

Case 3: Functional Analysis

4DRA is dynamic

"Imaging of dynamic nature of the heart with congenital defects in the cath-lab"

4DRA does offer the entire range of functional analysis

Case 3: Functional Analysis Volumetric Output Parameters

Volumetric Analysis :

43.1ml end diastolic volume 12.2ml end systolic volume 30.8ml stroke volume

72% ejection fraction

5.2 l/min cardiac output 4.7 l/min/m² cardiac index

Chamber segmentation by courtesy of Yefeng Zheng, Siemens Medical Solutions USA, Inc., Princeton, NJ

Case 3: Functional Analysis Radial local wall motion

Case 3: Functional Analysis Synchronicity – End Systolic Heart Phase

Conclusion and Outlook

Intention

Feasibility of 4DRA

Generate dynamic anatomic datasets high spatial and temporal resolution

Develop tools for functional 4D analysis (volumes, kinetic, regional)

Shortcomings

Restricted to current 3DRA protocol (ethic reasons)

Rapid pacing => unnatural contraction pattern

Future

Physiological contraction pattern in Sinus rhythm

Optimization of frames / cycles (ALARA Low radiation, low contrast, short scan time) Adaptation current HW & SW

Improve interventional outcome by understanding 4D dynamics / interaction

Faaaar away

Preform CFD Flow analysis at CathLab based on 3D and 4DRA to understand obstruction Use 4D kinetics to virtually predict device suitability

Conclusion

- 4D toolbox ready
- Current data derived from 3DRA are not ideal

From 3D to 4D Rotational Angiography : Technical Feasibility and Clinical Value

Oliver Taubmann, Andreas Maier

Friedrich-Alexander University, Erlangen, Germany

Günter Lauritsch

Siemens Healthcare GmbH, Forchheim, Germany

Gregor Krings

University Medical Centre, Utrecht, Netherlands

